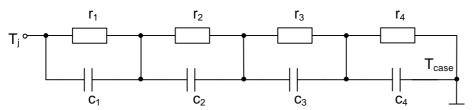

Application Note

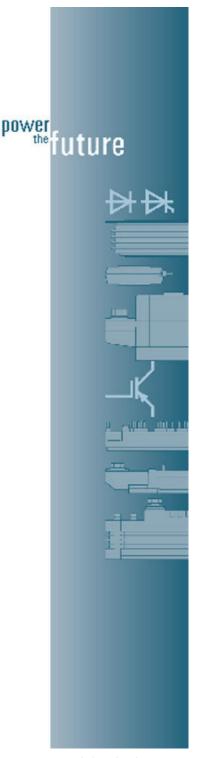
Page 1 of 3

Thermal Impedance Models


The thermal behavior of semiconductors can be described by two different models:

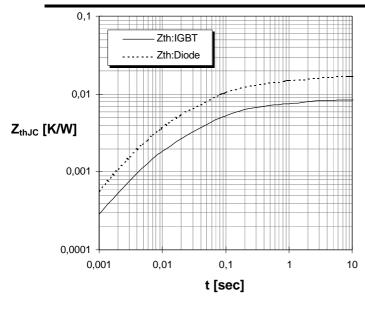
Continued fraction model

The above shown model reflects the physical layer structure of a semiconductor – thermal capacitances with thermal resistances in between. The RC-elements are unambiguously assigned to the layer structure of the module (chip, solder, substrate, baseplate).

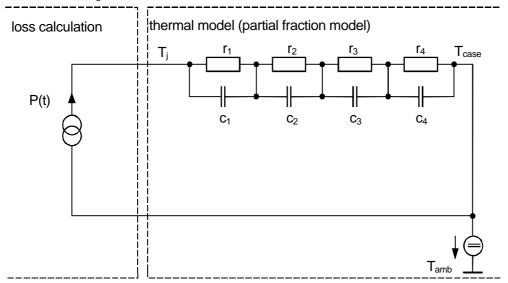

Partial fraction model

The separate RC-elements in this representation have no physical meaning. Their values are extracted from the measured heating-up curve of the module by a corresponding analysis tool.

The data sheets show these partial fraction coefficients $(\tau_n=r_nc_n)$ in tabular form. The thermal impedance curve is given as diagramm Z(t) e.g:


i	1	2	3	4
r _i [K/kW] : IGBT	1,56	4,25	1,26	1,44
τ _i [sec] : IGBT	0,0068	0,0642	0,3209	2,0212
r _i [K/kW] : Diode	3,11	8,49	2,52	2,88
τ _i [sec] : Diode	0,0068	0,0642	0,3209	2,0212

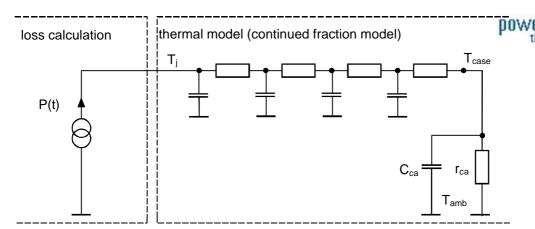
eupec GmbH + Co KG Max-Planck-Straße 5 D-59581 Warstein Tel. +49(0)2902 764-0 Fax +49(0)2902 764-1256 EMail info@eupec.com www.eupec.com



THERMAL IMPEDANCE MODELS

 $Z_{\text{thjc}}(t) = \sum_{i=1}^{n} R_{\text{thjc,i}} \times (1 - e^{-\frac{t}{t_i}})$

Considering the switching and conducting losses and the modeling of the heat-sink the junction temperature T_j can be calculated according to the following sketch:


$$T_{j}(t) = P(t) * Z_{thjc}(t) + T_{case} = P(t) * \sum_{i=1}^{n} R_{i}(1 - e^{-\frac{t}{t_{i}}}) + T_{case}$$



THERMAL IMPEDANCE MODELS

Page 3 of 3

If a heat sink should be considered in the calculation, models of both IGBT and heat sink have to be linked together by applying their continued fraction models.

