

LTV-480 series

Positive Logic High CMR Intelligent Power Module and Gate Drive Interface Photocoupler

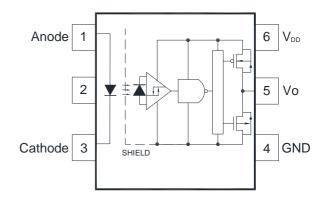
Description

The LTV-480 series fast speed photocoupler contains a AlGaAs LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive. Minimized propagation delay difference between devices makes these optocouplers excellent solutions for improving inverter efficiency through reduced switching dead time.

Features

- Positive output type (totem pole output)
- Truth Table Guaranteed: V_{CC} from 4.5V to 30V
- Performance Specified for Common IPM Applications Over Industrial Temperature Range.
- Short Maximum Propagation Delays
- Minimized Pulse Width Distortion (PWD)
- Very High Common Mode Rejection (CMR)
- Hysteresis
- Safety approval
 - UL 1577 recognized with 5000 V_{RMS} for 1 minute for LTV-480P and LTV-480W
 - VDE DIN EN 60747-5-5 Approved

V_{IORM} = 891Vpeak for LTV-480P


V_{IORM} = 1140Vpeak for LTV-480W

Specification

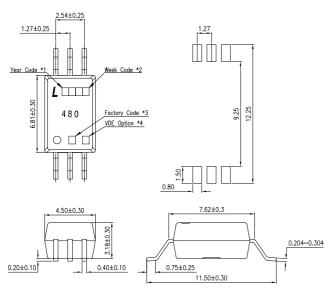
- Wide operating temperature range: -40°C to 105°C
- Maximum propagation delay t_{PLH} / t_{PHL} = 200/220 ns
- Maximum Pulse Width Distortion (PWD) = 120 ns
- Propagation Delay Difference Min/Max = -210/210 ns
- Wide Operating V_{CC} Range: 4.5 to 30Volts
- 20 kV/µs minimum common mode rejection (CMR) at V_{CM} = 1500 V

Applications

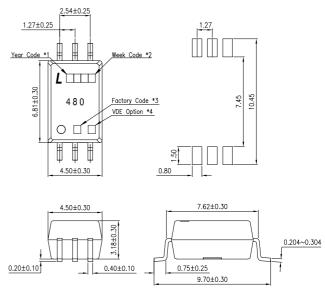
- IPM Interface Isolation
- Isolated IGBT/MOSFET Gate Drive
- AC and Brushless DC Motor Drives
- Industrial Inverters
- General Digital Isolation

Truth Table

LED	OUT
ON	Н
OFF	L


A 0.1µF bypass Capacitor must be connected between Pin4 and Pin6

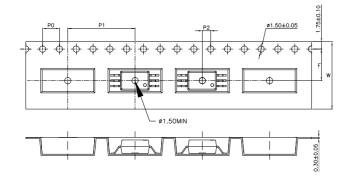
Part No. : LTV-480 series BNS-OD-FC002/A4



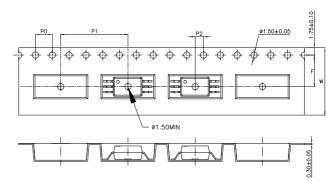
2. PACKAGE DIMENSIONS

2.1 LTV-480W

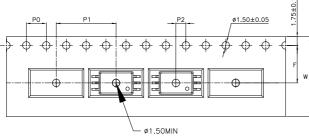
2.2 LTV-480P

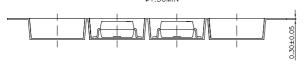

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark (Y: Thailand).
- 4. "4" or "V" for VDE option.
- * Dimensions are in Millimeters and (Inches).

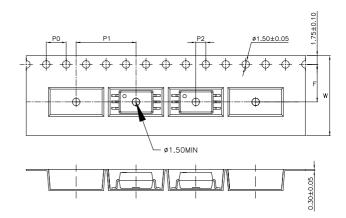


3. TAPING DIMENSIONS


3.1 LTV-480W-TA



3.2 LTV-480W-TA1



3.3 LTV-480P-TA

3.4 LTV-480P-TA1

Description	Symbol	Dimension in mm (inch) For W type	Dimension in mm (inch) For P type
Tape wide	W	16±0.3 (0.63)	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.16)	4±0.1 (0.16)
Distance of compartment	F	7.5±0.1 (0.3)	7.5±0.1 (0.3)
Distance of compartment	P ₂	2±0.1 (0.079)	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	16±0.1 (0.63)	12±0.1 (0.47)

3.5 Quantities Per Reel

Package Type	LTV-480 series
Quantities (pcs)	1000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25℃

	Parameter	Symbol	Rating	Unit	Note
	Average Forward Input Current	l _F	10	mA	
Input	Peak Transient Input Current (<1us pulse width, 300pps)	I _{F(tran)}	1.0	А	
	Reverse Input Voltage	V_{R}	5	V	
Ou show is the	Output Collector Current	Ιο	50	mA	
Output	Output Collector Voltage	Vo	-0.5 ~ +35	V	
	Total Package Power Dissipation	P_T	145	mW	
	Supply Voltage	V _{CC}	35	V	
	Operating Temperature	T_{opr}	-40 ~ +105	°C	
	Storage Temperature	T_{stg}	-55 ~ +125	°C	
	Lead Solder Temperature (10s)	T_{sol}	260	°C	

Note: A ceramic capacitor (0.1 µF) should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

4.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	Note
Operating Temperature	T _A	-40	105	°C	
Supply Voltage	Vcc	4.5	30	V	1
Forward Input Current (ON)	I _{F(ON)}	1.6	5	mA	2
Forward Input Voltage (OFF)	$V_{F(OFF)}$	-	0.8	V	

Note 1: Detector requires a V_{CC} of 4.5 V or higher for stable operation as output might be unstable if V_{CC} is lower than 4.5 V. Be sure to check the power ON/OFF operation other than the supply current.

Note 2: The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guard band.

4.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
	Input Forward Voltage	V_{F}	1.2	1.37	1.6	V	I _F = 5mA	7	
	Input Forward Voltage Temperature Coefficient	$\Delta V_F / \Delta T$		-1.237		mV/ ^O C	I _F = 5mA		
	Input Reverse Voltage	BV_R	5			V	I _R = 10μA		
Input	Input Threshold Current (Low to High)	I _{FLH}		0.7	1.5	mA		5, 6	
	Input Threshold Voltage (High to Low)	V_{FHL}	0.8			V			
	Input Capacitance	C_{IN}		33		pF	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$		2
		Іссн			3.0	mA	$V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA},$ $I_O = 0 \text{ mA}$		
	High Level Supply Current	ICCH		1.9	3.0	mA	$V_{CC} = 30 \text{ V}, I_F = 5 \text{ mA},$ $I_O = 0 \text{ mA}$		
	Low Level Supply Current	nt loca			3.0	mA	$V_{CC} = 5.5 \text{ V}, V_F = 0 \text{V},$ $I_O = 0 \text{ mA}$		
	Low Level Oupply Current	ICCL		2.0	3.0	mA	$V_{CC} = 30 \text{ V}, V_F = 0 \text{ V},$ $I_O = 0 \text{ mA}$		
Output	High level output current	I _{OSH}			-160	mA	$V_{CC} = 5.5V$, $I_F = 5mA$, $V_O = GND$		1
Output	riigirievei output current	IOSH			-200	IIIA	$V_{CC} = 20V$, $I_F = 5mA$, $V_O = GND$		I
	Low lovel output ourrent		160			mA	$V_0 = V_{CC} = 5.5V, V_F = 0V$		1
	Low level output current	l _{ost}	200				$V_0 = V_{CC} = 20V, V_F = 0V$		I
		V	V _{CC} .	V _{CC} -		.,	I _{OL} = -6.5mA	4,8	
	High level output voltage	V _{OH}	0.5	0.025		V	IOL = -0.SIIIA	4,0	
	Low level output voltage	V_{OL}		V _{EE+} 0.015	V _{EE +} 0.5	V	I _{OL} = 6.5mA	3	

Specified over recommended temperature (T_A = -40°C to +105°C, +4.5V \leq V_{CC} \leq 30V), I_{F(ON)} = 1.6mA to 5mA, V_{F(OFF)} = 0V to 0.8V, unless otherwise specified. All typicals at $T_A = 25$ °C.

Note 1: Duration of output short circuit time should not exceed 500 $\ensuremath{\mu s}.$

Note 2: Input capacitance is measured between pin 1 and pin 3.

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to High Output Level	t _{PHL}		120	200		$C_L = 100 pF$, $V_F = 0V \rightarrow I_{F(ON)} = 1.6 mA$		1
Propagation Delay Time to Low Output Level	t _{PLH}		130	220		$C_L = 100 pF$, $I_{F(ON)} = 1.6 mA \rightarrow V_F = 0V$	1, 9, 10,	1
Pulse Width Distortion	PWD			120		C _L = 100pF,	11	2
Propagation delay difference between any two parts or channels	PDD	-210		210	ns	C _L = 100pF,		3
Output Rise Time (10 to 90%)	Tr		35				1	
Output Fall Time (90 to 10%)	Tf		35				I	
Common mode transient immunity at high level output	CMH	20			kV/μs	$T_A = 25$ °C, $I_F = 4.0$ mA, $V_{CM} = 1500$ V, $V_{CC} = 5$ V		
Common mode transient immunity at low level output	CML	20			kV/µs	$T_A = 25^{\circ}C$, $V_F = 0 \text{ V}$, $V_{CM} = 1500 \text{ V}$, $V_{CC} = 5 \text{ V}$	2	4

Over recommended operating conditions $T_A = -40^{\circ}C$ to $105^{\circ}C$, $V_{CC} = +4.5$ V to 30 V, $I_{F(ON)} = 1.6$ mA to 5 mA, $V_{F(OFF)} = 0$ V to 0.8 V, unless otherwise specified. All typicals at $T_A = 25^{\circ}C$.

- Note 1: The t_{PLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The t_{PHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
- Note 2: Pulse Width Distortion (PWD) is defined as |t_{PHL} t_{PLH} | for any given device.
- Note 3: The difference of t_{PLH} and t_{PHL} between any two devices under the same test condition.
- Note 4: CM_H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $V_O > 2.0 \text{ V}$. CM_L is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $V_O < 0.8 \text{ V}$. Note: Equal value split resistors (Rin/2) must be used at both ends of the LED.

6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Note
Withstand Insulation Test Voltage	V _{ISO}	5000	_	_	V_{RMS}	RH \leq 50%, t = 1min, T _A = 25°C	1, 2
Input-Output Resistance	R _{I-O}	_	10 ¹²	_	Ω	V _{I-O} = 500V DC	1
Input-Output Capacitance	C _{I-O}	_	1.0	_	р	f = 1MHz, T _A = 25°C	1

Specified over recommended temperature ($T_A = -40^{\circ}C$ to $+105^{\circ}C$) unless otherwise specified. Typical values applies to $T_A = 25^{\circ}$

Note 1: Device considered a two-terminal device: pins 1, 2 and 3 shorted together and pins 4, 5 and 6 shorted together.

Note 2: In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V_{RMS} for one second (leakage detection current limit, II-O < = 10 μ A). This test is performed before the 100% production test.

TEST CIRCUIT

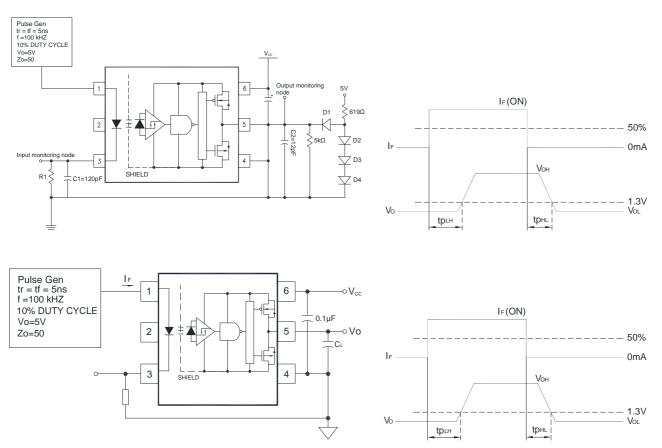


Figure 1: tr, tf, tplh and tphl Test Circuit and Waveforms

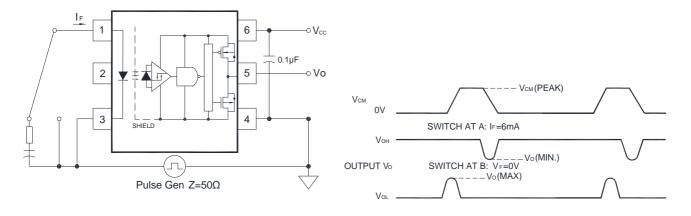
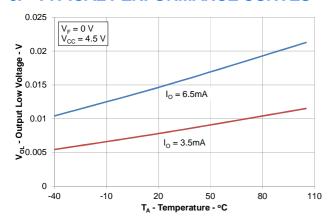



Figure 2: CMR Test Circuit and Waveforms

8. TYPICAL PERFORMANCE CURVES

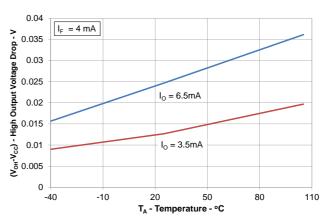


Figure 3: V_{OL} vs. Temperature

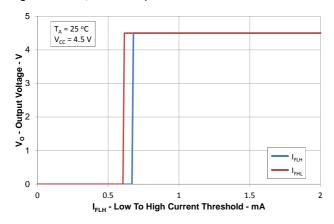


Figure 4: V_{OH} - V_{CC} vs. Temperature

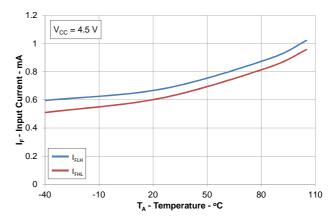


Figure 5: I_{FLH} Hysteresis

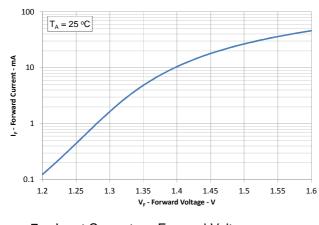


Figure 6: I_{FLH} vs. Temperature

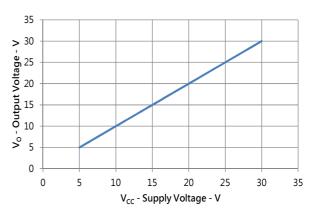
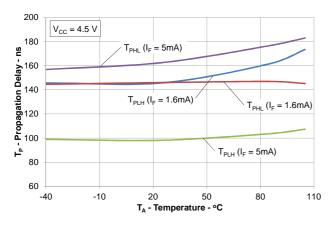



Figure 7: Input Current vs. Forward Voltage

Figure 8: Input Current vs. Forward Voltage

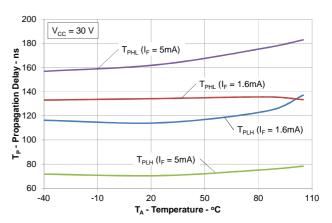


Figure 9: Propagation Delays vs. Temperature

Figure 10: Propagation Delays vs. Temperature

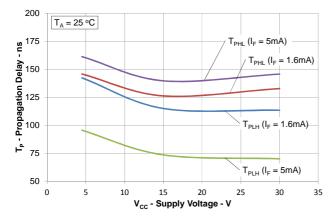
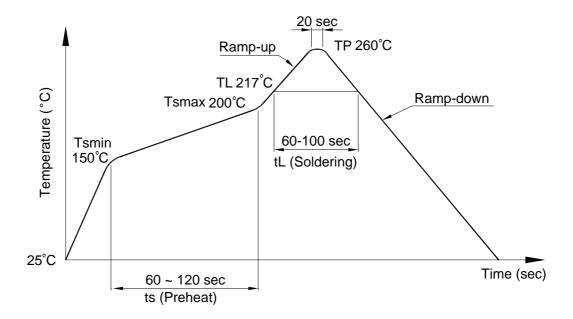


Figure 11: Propagation Delays vs. V_{CC}



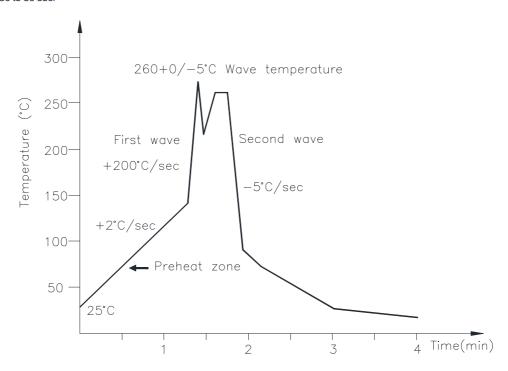
9. TEMPERATURE PROFILE OF SOLDERING

9.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T _L)	217°C
- Time (t∟)	60 ~ 100sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

9.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

9.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

2/13 Part No. : LTV-480 series BNS-OD-FC002/A4

10. NAMING RULE

Part Number Options
LTV-480P-TA
LTV-480P-TA1
LTV-480W-TA
LTV-480W-TA1
LTV480PTA-V
LTV480PTA1-V
LTV480WTA-V
LTV480WTA1-V

Definition of Suffix	Remark
"480"	LiteOn model name
"P"	clearance distance 7mm typical
"W"	clearance distance 8mm typical
"TA"	Pin 1 location at lower right of the tape
"TA1"	Pin 1 location at upper left of the tape
"V"	VDE approved option

11. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.